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MR-only radiotherapy treatment planning

«  MR-only radiotherapy treatment planning requires
the simultaneous

a) synthesis of a CT scan (synCT) from MRI

L) segmentation of organs at risk (OAR) from
MR

Main goal

a) Multi-task learning for simultaneous
regression and segmentation

b) Probabilistic deep leaming to acquire
uncertainties in the prediction of the network

Poster M-101
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Multi-task feature leaming

* Medical image analysis aims to learn a common anatomical representation
* Learn a non-linear mapping from this feature space to minimise a 10ss
*  How to minimise this loss in a multi-task setting?
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Multi-task feature leaming

* Medical image analysis aims to learn a common anatomical representation

* Learn a non-linear mapping from this feature space to minimise a 10ss

*  How to minimise this loss in a multi-task setting?

* Most methods do not consider that uncertainty in the task varies depending on the spatial location

Ground truth labels

Constant uncertainty
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Figure adapted
from Asman et. al.,
IEEE TMI 2011

« Allows us to exploit this property (heteroscedasticity) for a natural mechanism for weighting task

losses
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Qur contribution

« Probabllistic dual-task network with hard-parameter sharing

o Shared representation network + and segmentation specific branches

» Predict task-specific heteroscedastic uncertainty for spatially adaptive task loss weighting

*  Approximate Bayesian inference to also capture uncertainty in the model weights
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Qur contribution

*  Multi-task likelihood:

CE(fY (x),¥y2 = ¢)
L(y,,y, =c6x;W) = + S + log( 0§V(X>2)
203" (x)
*  Separate networks to predict:
. and segmentation per voxel: ,fzw (x)
=  Spatially adaptive weighting using heteroscedastic uncertainty: oy (x)?
‘( Regression flvv(x)}( N
~ ) W )Zﬂ P(y1IW,x)
Shared representation e ey o J = C,X;
‘Intrinsicuncertaintv O'QVV(X)ﬂr § [ L(Yl7y2 ) 7W) }
) LP(Y2 =W, X))
)

P
‘ Segmentation f2VV (x)
N
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Experiment on 15 prostate cancer patients

«  3-fold cross-validation for training and testing

Input image Reference Result Task uncertainty Model uncertainty

Poster M-101



Experiment on 15 prostate cancer patients

«  3-fold cross-validation for training and testing

Reference Result Task uncertainty Model uncertainty

Poster M-101



Experiment on 15 prostate cancer patients

«  3-fold cross-validation for training and testing

Reference Result Task uncertainty Model uncertainty

Poster M-101



Main results

1. Joint modelling of heteroscedastic uncertainty and test-time variance in a multi-task setting
outperforms homoscedastic weighting and all other models

Models All Bone L femur R femur Prostate Rectum Bladder

Regression - synCT - Mean Absolute Error (HU)

Multi-task + homoscedastic weighting  44.3(3.1) 126(14.4) 74.0(19.5) 73.7(17.1) 29.4(4.7) 58.4(48.0) 18.2(3.5)
Our method 433(2.9) 121(12.6) 69.7(13.7) 67.8(13.2) 28.9(2.9) 55.1(48.1) 18.3(6.1)

2. Total uncertainty provides a mechanism for automated quality control and assurance

synCT error Total uncertainty
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Main results

*  Well calibrated variance from our model (A) compared those with constant task uncertainty (B)

synCT

Proposed

Kendall et al.
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Thanks!

O More results in poster!

O Code to be released within NiftyNet (pip install niftynet)
O Poster #1071 tonight from 18:00 to 19:30!
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