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. Summary . What are Stochastic Filter Groups? 4 SFGs improve MTL performance

« Benefits of multi-task learning (MTL) depend on the nature « Core idea: cluster convolution kernels into task specific and shared groups in each layer of a CNN » Learning the allocation of kernels in MTL improves task
of feature sharing and the network architecture  We define task-specific groups as the set of filters that are only updated to minimise corresponding pertormance
* Problem: these architectures are manually pre-specified task losses , while the shared group follows the same logic but is leaned to optimise all task * We compared SFG-MTL architectures against: a) single-task
which can be suboptimal » Jointly learn the grouping and convolution kernel weights ngtworks, hard-paramgter sharing netwprks, MTL netwo.rks
. Solution: we propose Stochastic Filter Groups (SFG): a B w||t2 (;1106Iearned allocation and Cross-Stitch networks [Misra et
principled mechanism to learn the amount of feature sharing Filters Group probabilities  Sample & Assign to Groups al, |
and separation between tasks ;- P Ps Po | « Dataset 1: UTKFace - age and gender prediction
w Cat ~ [0 G, “Task 1” _ _ _
. We show the benefits of SFGs in two multi-task problems 1 ({0601 ]03]) : 1 « Dataset 2: Prostate MRI — CT synthesis and segmentation
W Cat ( ) i W Single task W Equal allocation model @ Cross-Stitch
M Il ified Learned architecture w ~ [on o ’s Hard parameter sharin B Constant p=[1/3, 1/3,1/3] mm Multi-task SFG
tlzl:nuka+yb?:§g;\lees with our method ’ cat ( ) :; G, “Shared p g p
(0 O e W4 Cat ( ) ~ :) 8.0 93 28.0 —
Gender ~ 1 o s -0.86
~ Ws Cat ( ) : s
_>y]. 0 ~ 0 GZ “Task 2” 25 27.0 '0'848
‘U W6 Cat ( ) ? 7.0 > 0.820
U g -90% E 26.5 é
i Definitions: 26_0.-- 'Bsg éz” mg
Agz . G; := filters updated w.r.t task-1 loss and task-2 loss @G 0 0763
G, := filters updated w.r.t task-2 loss
Optimisation of network weights and kernel grouping . Qualitative Results
@ Sparse r:outlng 01_: features for * We can visualise the learned allocation of kernels in a * Activation maps for kernels with low grouping entropy
desired gradient flow CNN with SFG modules confirm increasing task specialisation
() Forward Pass e 2 (i) Backward Pass  Across both datasets, the ratio of task-specific groups Frstlayer - Socondlastlayer  LastLayer

iIncreases with layer depth
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@ Filter assignment as T+1 group
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3) Continuous relaxation using
Gu

drop-out mbel-Softmax [Jang et al. 2016} R S S f
| | o | | | * Density plots of probabilities p illustrate learned grouping
» Cast learning of grouping probabilities and filter * Firsttwo terms have zero gradients w.r.t . Training trajectories reveal some kernels converge faster * Maps for kernels with high grouping entropy show
weights as variational inference [Gal et al. 2018] assignments probabilities p to corresponding groups uncertainty in feature utility for maximising task
’ EXtended binary drOpOUt tO CategOrical diStribUtiOnS SOftHlaX ([gz —l_ 10g pz-‘ /T) g i Gumbel(o, ].) SFG Layer 1 SFG Layer 2 SFG Layer7 SFG Layer 8 performance SFG Layer 4 SFG Layer 5

Input MR Task 1 Task 2 Task 1 Task 2

* Minimise the following variational objective:
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