

≜UCL

Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy treatment planning

Felix Bragman, Ryutaro Tanno, Zach Eaton-Rosen, Wenqi Li, David J. Hawkes, Sebastien Ourselin, Daniel C. Alexander, Jamie R. McClelland and M. Jorge Cardoso

Poster M-101

21st International Conference on Medical Image Computing & Computer Assisted Intervention (MICCAI 2018) September 2018, Granada

MR-only radiotherapy treatment planning

- MR-only radiotherapy treatment planning requires
 the simultaneous
 - a) synthesis of a CT scan (synCT) from MRI
 - b) segmentation of organs at risk (OAR) from MRI
- Main goal
 - a) Multi-task learning for simultaneous regression and segmentation
 - b) Probabilistic deep learning to acquire uncertainties in the prediction of the network

MRI

CT synthesis

Organ segmentation

Poster M-101

Multi-task feature learning

- Medical image analysis aims to learn a common anatomical representation
- Learn a non-linear mapping from this feature space to minimise a loss
- How to minimise this loss in a multi-task setting?

Poster M-101

Multi-task feature learning

- Medical image analysis aims to learn a **common anatomical representation** •
- Learn a non-linear mapping from this feature space to minimise a loss •
- How to minimise this loss in a multi-task setting? •
- Most methods do not consider that uncertainty in the task varies depending on the spatial location ٠

.75

Figure adapted from Asman et. al., IEEE TMI 2011

Allows us to exploit this property (heteroscedasticity) for a natural mechanism for weighting task ٠ losses

Poster M-101

Task 2 Task 1 Task n

Multi-task feature learning

- Medical image analysis aims to learn a common anatomical representation
- Learn a non-linear mapping from this feature space to minimise a loss
- How to minimise this loss in a multi-task setting?
- Most methods do not consider that uncertainty in the task varies depending on the spatial location

Figure adapted from Asman *et. al.*, IEEE TMI 2011

• Allows us to exploit this property (heteroscedasticity) for a natural mechanism for weighting task losses

Poster M-101

Task 1 Task 2 Task n

Our contribution

- Probabilistic dual-task network with hard-parameter sharing
 - Shared representation network + regression and segmentation specific branches
- Predict task-specific heteroscedastic uncertainty for spatially adaptive task loss weighting
- Approximate Bayesian inference to also capture uncertainty in the model weights

Our contribution

• Multi-task likelihood:

$$\mathcal{L}(\mathbf{y}_1, \mathbf{y}_2 = c, \mathbf{x}; \mathbf{W}) = \frac{||\mathbf{y}_1 - f_1^{\mathbf{W}}(\mathbf{x})||^2}{2\sigma_1^{\mathbf{W}}(\mathbf{x})^2} + \frac{\operatorname{CE}(f_2^{\mathbf{W}}(\mathbf{x}), \mathbf{y}_2 = c)}{2\sigma_2^{\mathbf{W}}(\mathbf{x})^2} + \log\left(\sigma_1^{\mathbf{W}}(\mathbf{x})^2 \sigma_2^{\mathbf{W}}(\mathbf{x})^2\right)$$

- Separate networks to predict:
 - Regression and segmentation per voxel: $f_1^{\mathbf{W}}(\mathbf{x})$, $f_2^{\mathbf{W}}(\mathbf{x})$
 - Spatially adaptive weighting using heteroscedastic uncertainty: $\sigma_1^{\mathbf{W}}(\mathbf{x})^2$, $\sigma_2^{\mathbf{W}}(\mathbf{x})^2$

Experiment on 15 prostate cancer patients

• 3-fold cross-validation for training and testing

Experiment on 15 prostate cancer patients

• 3-fold cross-validation for training and testing

Experiment on 15 prostate cancer patients

• 3-fold cross-validation for training and testing

Main results

1. Joint modelling of heteroscedastic uncertainty and test-time variance in a multi-task setting **outperforms** homoscedastic weighting and all other models

Models	All	Bone	L femur	R femur	Prostate	Rectum	Bladder
Regression - synCT - Mean Absolute Error (HU)							
Multi-task + homoscedastic weighting Our method	44.3(3.1) 43.3(2.9)	126(14.4) 121(12.6)	74.0(19.5) 69.7(13.7)	73.7(17.1) 67.8(13.2)	29.4(4.7) 28.9(2.9)	58.4(48.0) 55.1(48.1)	18.2(3.5) 18.3(6.1)

2. Total uncertainty provides a mechanism for automated quality control and assurance

Main results

• Well calibrated variance from our model (A) compared those with constant task uncertainty (B)

Thanks!

- □ More results in poster!
- □ Code to be released within NiftyNet (pip install niftynet)
- □ Poster #101 tonight from 18:00 to 19:30!

