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Multi-task learning

Manually specified
trunk + branches

* The benefits of multi-task learning (MTL)
depend on the structure of feature

sharing
Gender
:{)1 Hand-crafted architecture with a priori
knowledge on parameter sharing

Number of sharing combinations

combinatorial in layers and tasks
Y2 Feature sharing mechanisms proposed:
Age Misra et al. 2016, Ruder et al. 2018,
Meyerson et al. 2018 etc.




Main contribution

Manually specified Learned architecture
trunk + branches with our method
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Stochastic Filter Groups (SFG)

Filters Group probabilities Sample & Assign to Groups
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Stochastic Filter Groups (SFG)

Filters Group probabilities Sample & Assign to Groups
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G, :=filters updated w.r.t task-1 loss
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Gs :=filters updated w.r.t task-1 loss and task-2 loss
G, :=filters updated w.r.t task-2 loss
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Stochastic Filter Groups (SFG)
Possible grouping patterns

(i) uniform splits (ii) increasing task (iij) asymmetrical (iv) other

specialisation

=
\




SFG optimisation method

Structured routing of features to ensure desired flow of gradients
«  Multi-task extension of filter groups [loannou et al. 2016]

View filter assignment as T+1 way drop-out

« Cast learning of grouping probabilities and filter weights as
variational inference [Gal et al. 2018]

Continuous relaxation using Gumbel-Softmax [Jang et al. 2016]
. Learn categorical distribution over filter group assignments



SFG optimisation method

1. Structured routing of features to ensure desired flow of gradients
«  Multi-task extension of filter groups [loannou et al. 2016]

(i) Forward Pass Task 1 Loss
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SFG optimisation method

2. View filter assignment as T+1 way drop-out

« Cast learning of grouping probabilities and filter weights as
variational inference [Gal et al. 2018]
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SFG optimisation method

2. View filter assignment as T+1 way drop-out

« Cast learning of grouping probabilities and filter weights as
variational inference [Gal et al. 2018]
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3. Continuous relaxation using Gumbel-Softmax [Jang et al. 2016]

z = Softmax (|g; + logp;]/7) ¢ ~ Gumbel(0, 1)



Experiments - datasets

Age regression and gender prediction * Organ segmentation and CT synthesis
from face images (UTKFace) from 3D prostate MRI scans

« Multi-task VGG11 [Simonyan et al. 2015] -+ Multi-task HighResNet [Li et al. 2018]
with SFG with SFG




Results — SFGs improve multi-task performance
Age and gender prediction Organ segmentation and CT synthesis

I Single task I Equal allocation model 0 Multi-task SFG
" Hard parameter sharing e Constant p=[1/3, 1/3, 1/3]

o3 28.0
v

1 r0.86

r0.84

©
N

27.5

©
=
N
N
o

©

o
o
o
N

o]
()
Gender accuracy %

N
o
w

o

co

o

Segmentation DICE

=
o
o
~
©

Age MAE

synCT PSNR
o

o
N
N
u
o
o
N
=]

®
o

245 r0.74

-85

24.0 -0.72



Results - filter group ratio across tasks

« Kernel allocation for age regression, « Kernel allocation for CT synthesis,
shared and gender prediction shared and organ segmentation
SFG-VGG11 SFG-HighResNet
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Results - visualising activations

First Layer Second Last Layer Last Layer

Task Specialisation/Network Depth
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Please visit poster #11 for more details and results
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