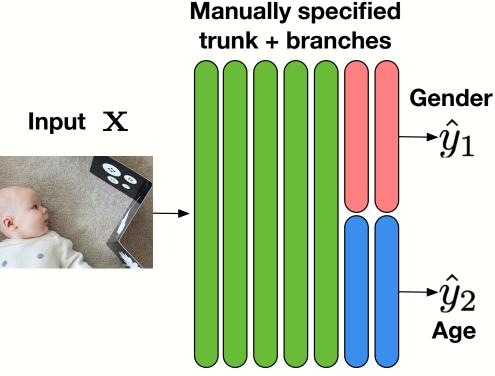


Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels

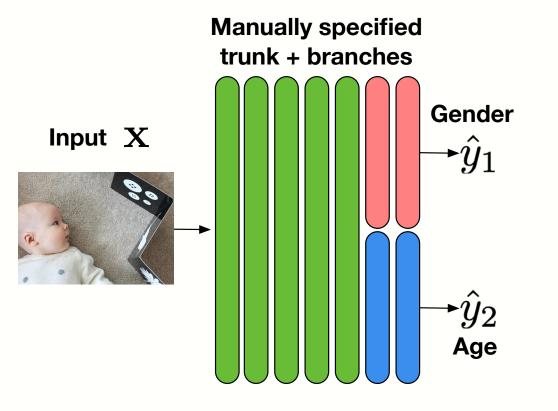
Felix J.S. Bragman*, Ryutaro Tanno* Sébastien Ourselin, Daniel C. Alexander and M. Jorge Cardoso

Multi-task learning

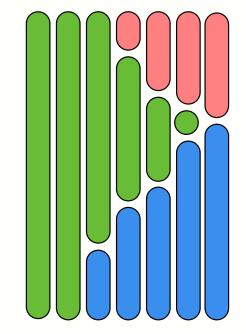


- The benefits of multi-task learning (MTL) depend on the structure of feature sharing
- Hand-crafted architecture with *a priori* knowledge on parameter sharing
- Number of sharing combinations combinatorial in layers and tasks
- Feature sharing mechanisms proposed: Misra et al. 2016, Ruder et al. 2018, Meyerson et al. 2018 etc.

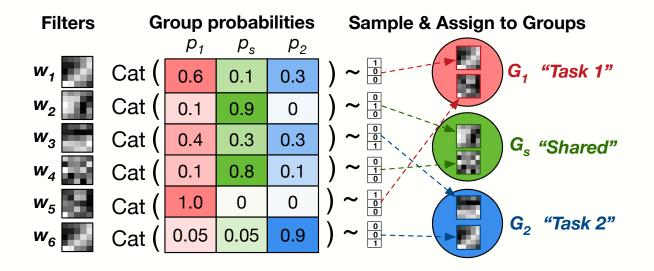
Main contribution



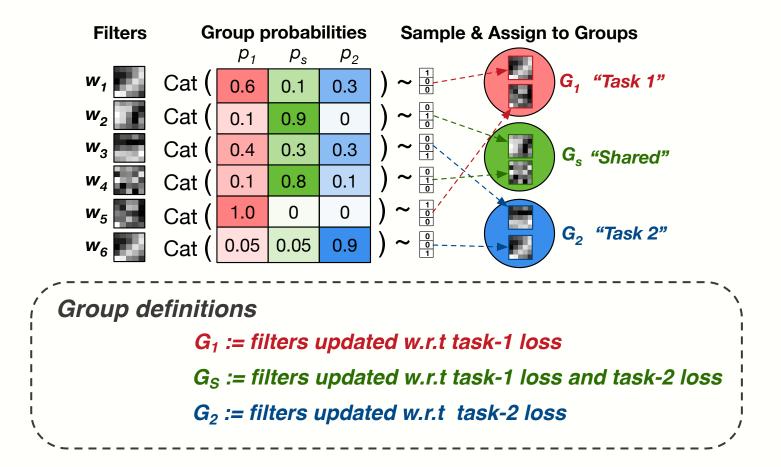
Learned architecture with our method



Stochastic Filter Groups (SFG)

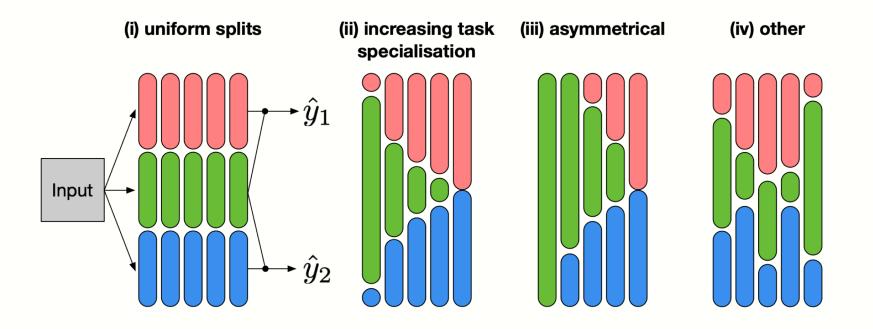


Stochastic Filter Groups (SFG)



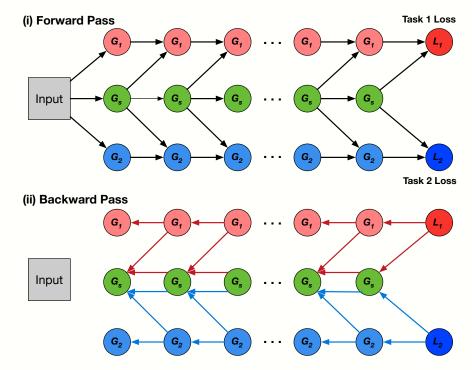
Stochastic Filter Groups (SFG)

Possible grouping patterns



- 1. Structured routing of features to ensure desired flow of gradients
 - Multi-task extension of filter groups [loannou et al. 2016]
- 2. View filter assignment as *T+1 way drop-out*
 - Cast learning of grouping probabilities and filter weights as variational inference [Gal et al. 2018]
- 3. Continuous relaxation using **Gumbel-Softmax** [Jang et al. 2016]
 - Learn categorical distribution over filter group assignments

- **1. Structured routing of features** to ensure desired flow of gradients
 - Multi-task extension of filter groups [loannou et al. 2016]



- 2. View filter assignment as *T+1 way drop-out*
 - Cast learning of grouping probabilities and filter weights as variational inference [Gal et al. 2018]

$$\mathcal{L}_{\mathrm{MC}}(\phi) = -\frac{N}{M} \sum_{i=1}^{M} \left[\log p\left(y_{i}^{(1)} | \mathbf{x}_{i}, \mathcal{W}_{i}\right) + \log p\left(y_{i}^{(2)} | \mathbf{x}_{i}, \mathcal{W}_{i}\right) \right]$$
Sample 1
Sample t
$$+ \lambda_{1} \cdot \sum_{l=1}^{L} \sum_{k=1}^{K_{l}} ||\mathbf{M}^{(l), k}||^{2} - \lambda_{2} \cdot \sum_{l=1}^{L} \sum_{k=1}^{K_{l}} \mathcal{H}(\mathbf{p}^{(l), k})$$

- 2. View filter assignment as *T+1 way drop-out*
 - Cast learning of grouping probabilities and filter weights as variational inference [Gal et al. 2018]

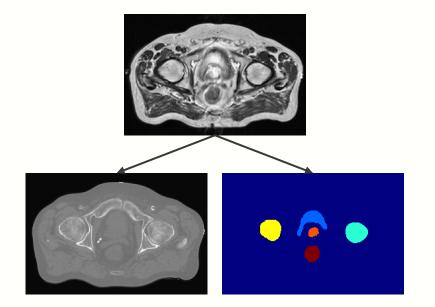
$$\mathcal{L}_{\mathrm{MC}}(\phi) = -\frac{N}{M} \sum_{i=1}^{M} \left[\log p\left(y_i^{(1)} | \mathbf{x}_i, \mathcal{W}_i\right) + \log p\left(y_i^{(2)} | \mathbf{x}_i, \mathcal{W}_i\right) \right] + \lambda_1 \cdot \sum_{l=1}^{L} \sum_{k=1}^{K_l} ||\mathbf{M}^{(l),k}||^2 - \lambda_2 \cdot \sum_{l=1}^{L} \sum_{k=1}^{K_l} \mathcal{H}(\mathbf{p}^{(l),k})$$

3. Continuous relaxation using Gumbel-Softmax [Jang et al. 2016]

$$z = \text{Softmax}\left([g_i + \log p_i]/\tau\right) \quad g \sim \text{Gumbel}(0, 1)$$

Experiments - datasets

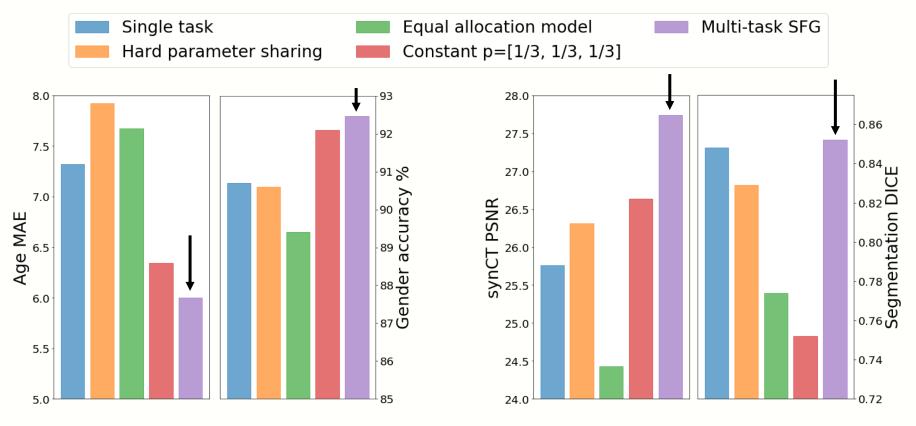
- Age regression and gender prediction from face images (UTKFace)
- Multi-task VGG11 [Simonyan et al. 2015] with SFG
- Organ segmentation and CT synthesis
 from 3D prostate MRI scans
- Multi-task *High*ResNet [Li et al. 2018] with SFG



Results – SFGs improve multi-task performance

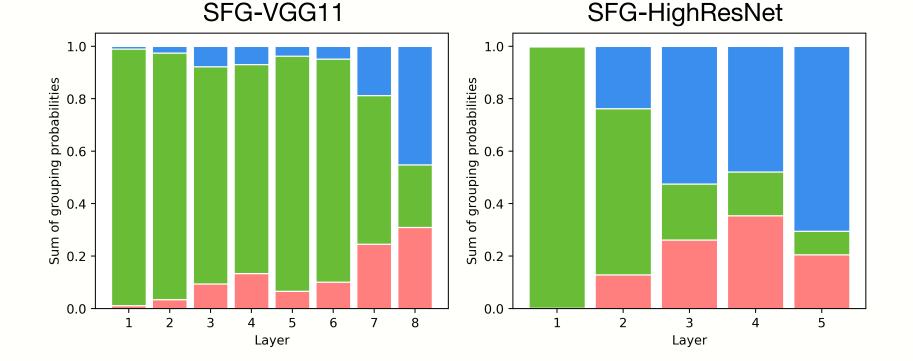
Age and gender prediction

Organ segmentation and CT synthesis

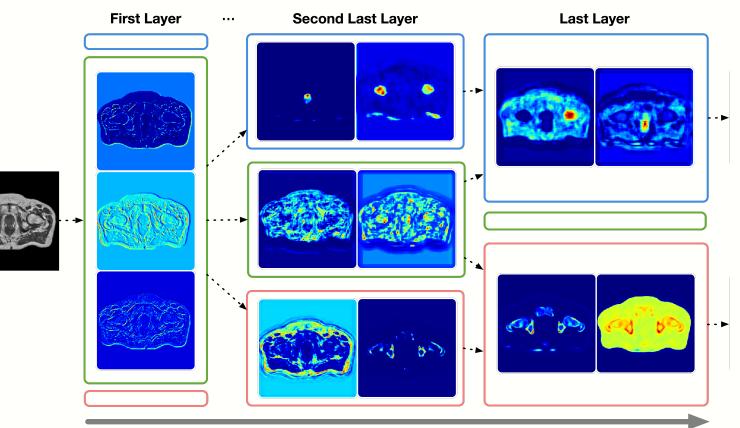


Results - filter group ratio across tasks

- Kernel allocation for age regression, shared and gender prediction
- Kernel allocation for CT synthesis, shared and organ segmentation



Results - visualising activations



Task Specialisation/Network Depth

Thank you!

Please visit poster #11 for more details and results

