

# L UCL

# Quality control in MR-only radiotherapy treatment planning using multi-task learning and uncertainty estimation

### Felix Bragman<sup>1,2</sup>, Ph.D.

- 1. Centre for Medical Image Computing, University College London
- 2. Artificial Medical Intelligence Group, School of Biomedical Engineering and Imaging Sciences, King's College London







## Talk summary

- MR-only radiotherapy treatment planning
- Methods for synthetic CT generation and organ at risk segmentation
- Deep learning for MR-only radiotherapy treatment planning [MICCAI & MIDL 2018]





## Automated CT synthesis and OAR segmentation from MRI

 Treatment planning requires both computed tomography (CT) and magnetic resonance imaging (MRI)

#### With only CT

- No contrast between tumour and surrounding normal tissue
- Errors in the delineation of OARs





Figures from Phys.Med.Bio 63(2018) 05TR01





## Automated CT synthesis and OAR segmentation from MRI

### With MRI







## Difficulties introduced with MR-CT registration

- Image registration of MR to CT scans
  - Introduces geometrical uncertainty: ~2mm in brain and ~2-3mm for prostate [Haider et al. 2018]
  - Systematic errors  $\rightarrow$  shift high dose regions away from target + geometric miss
- Unnecessary CT scanning  $\rightarrow$  radiation dose, patient time and imaging costs





## MR-only radiotherapy treatment planning

- No image registration generate a synthetic CT scan directly from MR
- Segmentation of key structures performed using MR scans with high soft-tissue contrast









## MR-only radiotherapy treatment planning

- Traditional methods
  - Label fusion: registration, propagation and fusion [Burgos et al., 2017]
- Machine learning
  - Generative models [Cardoso et al., 2015]
  - Random forest regression [Jog et al., 2017]
  - Convolutional neural networks [Wolterink et al., 2017]



## Traditional methods for synCT generation and OAR segmentation

Registration, propagation and fusion [Burgos et al., 2017] .



British Institute of Radiology

29/03/2019





## Traditional methods for synCT generation and OAR segmentation

- Limitations
  - Data sharing: the algorithm by itself is useless..
  - No concept of uncertainty: what are the errors in the synCT and segmentation?
  - Fully deterministic
  - Requires inter-patient registration (>10) at every iteration of the algorithm





## Deep learning for synCT generation and OAR segmentation

#### Limitations of old methods

- 1. Data sharing issue
- 2. Fully deterministic system
- 3. No concept of uncertainty
- 4. Inter-patient registration is required

#### Using deep learning

- 1. Share derived model-parameters
- 2. Fully probabilistic knowledge of the model that generates the synCT or segmentation
- 3. Model uncertainty in the process
- 4. Very fast! (for 1 patient: 10 seconds versus 24hours)



## Our work

- Desirable properties of the CNN
  - a) Accurate prediction for the synCT and the OAR segmentations
  - b) Knowledge of the uncertainty in the predictions to be exploited for quality control
  - c) Ability to sample from the model to generate realistic predictions for probability dose delivery





## What is task uncertainty?

- Inherent ambiguity in the problem
- Uncertainty is spatial varying e.g. organ segmentation
- We want to be able to predict this uncertainty
- Why?
  - It can improve the quality of the predictions
  - Knowledge of this uncertainty can be used for quality control in the synthetic CT







## Our contribution

- Probabilistic multi-task network
  - Shared network + regression and segmentation specific branches
- Predict task-specific uncertainty for regression and segmentation to analyse model predictions
- Applied Bayesian modelling to enable stochastic sampling at test time

$$\mathcal{L}(\mathbf{y}_1, \mathbf{y}_2 = c, \mathbf{x}; \mathbf{W}) = \frac{||\mathbf{y}_1 - f_1^{\mathbf{W}}(\mathbf{x})||^2}{2\sigma_1^{\mathbf{W}}(\mathbf{x})^2} + \frac{\text{CE}(f_2^{\mathbf{W}}(\mathbf{x}), \mathbf{y}_2 = c)}{2\sigma_2^{\mathbf{W}}(\mathbf{x})^2} + \log\left(\sigma_1^{\mathbf{W}}(\mathbf{x})^2 \sigma_2^{\mathbf{W}}(\mathbf{x})^2\right)$$





**UC** 

## Experiment on 15 prostate cancer patients

• 3-fold cross-validation for training and testing





## Experiment on 15 prostate cancer patients

• 3-fold cross-validation for training and testing





## Experiment on 15 prostate cancer patients

• 3-fold cross-validation for training and testing







## Main results

1. Our model outperforms all baseline models including label fusion [Burgos et al., 2017]

| Models                                | All                                           | Bone      | L femur    | R femur    | Prostate   | Rectum     | Bladder   |  |  |  |
|---------------------------------------|-----------------------------------------------|-----------|------------|------------|------------|------------|-----------|--|--|--|
|                                       | Regression - synCT - Mean Absolute Error (HU) |           |            |            |            |            |           |  |  |  |
| HighResNet [7]                        | 48.1(4.2)                                     | 131(14.0) | 78.6(19.2) | 80.1(19.6) | 37.1(10.4) | 63.3(47.3) | 24.3(5.2) |  |  |  |
| HighResNet + dropout                  | 47.4(3.0)                                     | 130(12.1) | 78.0(14.8) | 77.0(13.0) | 36.5(7.8)  | 67(44.6)   | 24.1(7.5) |  |  |  |
| HighResNet + dropout + hetero [6]     | 44.5(3.6)                                     | 128(17.1) | 75.8(20.1) | 74.2(17.4) | 31.2(7.0)  | 56.1(45.5) | 17.8(4.7) |  |  |  |
| Multi-task + homo noise weighting [1] | 44.3(3.1)                                     | 126(14.4) | 74.0(19.5) | 73.7(17.1) | 29.4(4.7)  | 58.4(48.0) | 18.2(3.5) |  |  |  |
| Multi-atlas propagation [5]           | 45.7(4.6)                                     | 125(10.3) | -          | -          | -          | -          | -         |  |  |  |
| Multi-task + dropout + hetero         | 43.3(2.9)                                     | 121(12.6) | 69.7(13.7) | 67.8(13.2) | 28.9(2.9)  | 55.1(48.1) | 18.3(6.1) |  |  |  |

Multi-atlas propagation [5] 45.7(4.6) 125(10.3)Multi-task + dropout + hetero 43.3(2.9) 121(12.6)



## Main results

- Equivalent results with state of the art in segmentation
- Label fusion method used 3D T1/T2 scans...we trained only using 2D slices from T2

|                               | L femur    | R femur    | Prostate   | Rectum     | Bladder    |
|-------------------------------|------------|------------|------------|------------|------------|
| Multi-atlas propagation [5]   | 0.89(0.02) | 0.90(0.01) | 0.73(0.06) | 0.77(0.06) | 0.90(0.03) |
| Multi-task + dropout + hetero | 0.91(0.02) | 0.91(0.02) | 0.70(0.06) | 0.74(0.12) | 0.93(0.04) |



Using uncertainty for quality control

- Predicted uncertainty in the synCT correlates strongly with areas of high error
- Uncertainty is well calibrated





z-score

29/03/2019



## Sampling from the model for probabilistic dose delivery estimations

- Bayesian model so we can sample from the posterior distribution at test time
- Generate multiple realistic realisations of the synCT given an MR scan
- Used in probabilistic dose delivery algorithms

Samples from the posterior





## Thank you for listening

- [1] Bragman et al. Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy planning, MICCAI 2018
- [2] Bragman et al. Quality control in radiotherapy-treatment planning using multi-task learning and uncertainty estimation, MIDL 2018
- Code will be released open-source as part of the NiftyNet package (www.niftynet.io)
- Download @ pip install niftynet



29/03/2019

