Disease progression patterns in COPD

Felix Bragman, <u>Alexandra Young</u>, David Hawkes, Daniel Alexander and John Hurst

alexandra.young@ucl.ac.uk

No disclosures

COPD is heterogeneous and has a long-term progression that spans several decades

Fletcher-Peto, 1977

Vestbo, 2011

Lung function decline is a non-specific measure that can correspond to a range of underlying pathologies

Fletcher-Peto, 1977

Hypothetical description of COPD progression

Time

Disentangling imaging trajectories is complicated by long-term natural history of COPD

Fletcher-Peto, 1977

Objectives

- Demonstrate use of a novel machine learning technique to identify subgroups of COPD with distinct progression patterns
- Apply technique to image-based markers from COPDGene study

Disease progression

Previous studies investigating heterogeneity use clustering

- Clustering associates individuals with similar biomarker profiles
- Doesn't describe the progression of the disease
- Results highly variable (Castaldi et al. 2017)

Cluster Reproducibility by Cohort and Method

Clustering conflates disease subtypes and stages

Stage

Subtype and Stage Inference (SuStaIn)

Subtype and Stage Inference (SuStaIn)

SuStain initially developed for Alzheimer's disease, but naturally extends to COPD

Young et al., Nature Communications, 2018 (In press)

Reconstructing temporal progression from cross-sectional data

Reconstructing temporal progression from cross-sectional data

Reconstructing temporal progression from cross-sectional data

Reconstructing temporal progression from cross-sectional data

Reconstructing temporal progression from cross-sectional data

Reconstructing temporal progression from cross-sectional data

Reconstructing temporal progression from cross-sectional data

Emphysema precedes airway wall thickening

Reconstructing temporal progression from cross-sectional data

Α

В

Reconstructing temporal progression from cross-sectional data

Α

Β

Reconstructing temporal progression from cross-sectional data

Α

Β

Reconstructing temporal progression from cross-sectional data

Α

Β

Reconstructing temporal progression from cross-sectional data

Two subtype progression patterns: Emphysema precedes airway wall thickening Airway wall thickening precedes emphysema

SuStaIn formulates this idea mathematically and generalises it to multiple subtypes and biomarkers

Time

- Stages are indexed as a biomarker reaching a new z-score relative to a control population
- SuStaIn estimates the optimal number of subtypes

Application of SuStaln to COPDgene dataset

- Selected a set of 1349 patients (GOLD stage 1-4) with crosssectional CT imaging measures available
- Seven image based-markers
- Measured relative to a set of 1151 smoking controls

Tissue		Airway
Gas trapping	Emphysema	Airway related pathology
• % Gas trapping	 % Upper lobe emphysema % Lower lobe emphysema 	 Pi10 square root airway wall area Pi15 square root airway wall area % Segmental wall area % Sub-segmental wall area

1

2

SuStaln identifies a Tissue-Airway and an Airway-Tissue group

SuStaln stage

Tissue-Airway 76.3%

Airway-Tissue 23.7%

SuStaln identifies a Tissue-Airway and an Airway-Tissue group

SuStaln stage

Airway-Tissue 23.7%

1 2

N

1

2

SuStaln identifies a Tissue-Airway and an Airway-Tissue group

Tissue-Airway 76.3%

Gas trapping \rightarrow Emphysema

Airway-Tissue 23.7%

1

2

SuStaIn identifies a Tissue-Airway and an Airway-Tissue group

SuStaln stage

Tissue-Airway 76.3%

Gas trapping \rightarrow Emphysema \rightarrow Airway related pathology

SuStaIn identifies a Tissue-Airway and an Airway-Tissue group

Tissue-Airway 76.3%

Gas trapping \rightarrow Emphysema \rightarrow Airway related pathology

1 2 3

SuStaIn identifies a Tissue-Airway and an Airway-Tissue group

Tissue-Airway 76.3%

Gas trapping \rightarrow Emphysema \rightarrow Airway related pathology

1 2 3

SuStaln stage

SuStaIn identifies a Tissue-Airway and an Airway-Tissue group

Tissue-Airway 76.3%

Gas trapping \rightarrow Emphysema \rightarrow Airway related pathology

Subtypes correlate with decline in lung function

Early stages of COPD may be identifiable in a group of smoking controls

61% Stage 0 (no abnormalities)39% Stage 1+11% Stage 3+

Summary

- Identify two COPD subgroups that mirror classical descriptions of COPD phenotypes
- Tissue-airway: emphysema and low BMI
- Airway-tissue: chronic bronchitis and high BMI
- In each subgroup, SuStaIn stage is significantly correlated with lung function decline
- Early stages may be identifiable in a fraction of smoking controls

Acknowledgements

Felix Bragman John Hurst Daniel Alexander David Hawkes **EPSRC**

Engineering and Physical Sciences Research Council

Pre-print SuStaln Nature Comms

bioRxiv https://doi.org/10.1101/236604

