
Quantifying total uncertainty over predictions
• At test time, for each input patch    , output samples                        are obtained by performing T stochastic passes through the network such that 

• The variance of the predictive distribution quantifies the predictive uncertainty 

• We use the predictive mean as final estimates for whilst the total uncertainty is the sum of the predictive uncertainty and modelled heteroscedastic noise.
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Motivation and Overview
• Multi-task learning is dependent on the relative weighting of task 

losses and the mechanism for sharing network weights. 
• Task loss weightings are generally hyper-parameters or learned [1]
• We propose a probabilistic multi-task network (Fig. 1) that: 

a) estimates heteroscedastic uncertainty for spatially 
adaptive task loss weighting

b) captures model uncertainty through approximate 
Bayesian inference

• We apply our model to MR-only radiotherapy treatment planning,
• Results show:

1. heteroscedastic uncertainty improves multi-task learning 
over learned task loss weights

2. the estimated uncertainty can be exploited for quality 
assurance and control of the network

Probabilistic dual-task neural network 
• Probabilistic multi-task learning with hard-parameter sharing: representation network + task-specific networks
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Fig 1. A representation network learns an invariant feature space for the anatomy. A task-specific network then learns the non-linear mapping 
between the input and the various output tasks. The task-specific likelihoods are combined to yield the multi-task likelihood.

Task weighting with heteroscedastic uncertainty
• Heteroscedastic uncertainty represents inherent ambiguity present in the MR-CT intensity mapping and in 

obtaining voxel-wise class memberships
• Uncertainty is spatially varying and task dependent – this is exploited as a mechanism for task loss weighting

q Regression noise model q Segmentation noise model

q Multi-task heteroscedastic likelihood

Model uncertainty
• We account for parameter uncertainty through an approximation of the posterior distribution over the weights
• The posterior distribution is approximated through Bernouilli binary dropout [4]

Model performance
• We tested on 15 prostate scans using 3-fold cross-validation

• We trained the network on randomly sampled axial slices 

• Joint modelling of heteroscedastic and parameter uncertainty achieves best performance 
on synCT regression and outperforms homoscedastic task weighting

• Equivalent results in segmentation with the state of the art in pelvic segmentation [5]

Posterior distribution approximation Sampling posterior during training

Uncertainty as a quality control mechanism
• Total uncertainty correlates with regression errors in the synCT 

• Our method produces well calibrated uncertainty measures
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Fig 3.  Example of 
the model output. 
For each new 
subject, we obtain: 
1) a synCT, 2) 
segmentation of 
the organs, 3) the 
uncertainty across 
both predictions.

Fig 4. Correlation between total uncertainty and 
regression error. 

Fig 5. We calculated the z-score using the total uncertainty estimated in a) our model and b) with homoscedastic task weighting. 
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MR-only radiotherapy treatment planning
• Joint synthesis of a CT scan (synCT) - regression - and localisation 

of organs at risk (OAR) - segmentation - from an input MRI scan

• Previous synthesis methods [2, 3] do not jointly segment OARs
• CT synthesis methods are generally fully deterministic 
• A system that can sample both synCT and OAR segmentations will 

enable end-to-end uncertainty aware probabilistic planning

Regression

Segmentation

Input MR

Models All Bone L femur R femur Prostate Rectum Bladder

Regression - synCT - Mean Absolute Error (HU)

HighResNet [7] 48.1(4.2) 131(14.0) 78.6(19.2) 80.1(19.6) 37.1(10.4) 63.3(47.3) 24.3(5.2)
HighResNet + dropout 47.4(3.0) 130(12.1) 78.0(14.8) 77.0(13.0) 36.5(7.8) 67(44.6) 24.1(7.5)
HighResNet + dropout + hetero [6] 44.5(3.6) 128(17.1) 75.8(20.1) 74.2(17.4) 31.2(7.0) 56.1(45.5) 17.8(4.7)
Multi-task + homo noise weighting [1] 44.3(3.1) 126(14.4) 74.0(19.5) 73.7(17.1) 29.4(4.7) 58.4(48.0) 18.2(3.5)
Multi-atlas propagation [5] 45.7(4.6) 125(10.3) - - - - -
Multi-task + dropout + hetero 43.3(2.9) 121(12.6) 69.7(13.7) 67.8(13.2) 28.9(2.9) 55.1(48.1) 18.3(6.1)

Segmentation - OAR - Fuzzy DICE score

HighResNet [7] - - 0.91(0.02) 0.90(0.04) 0.67(0.12) 0.70(0.15) 0.92(0.05)
HighResNet + dropout - - 0.85(0.03) 0.90(0.04) 0.66(0.12) 0.69(0.13) 0.90(0.07)
HighResNet + dropout + hetero [6] - - 0.92(0.02) 0.92(0.01) 0.77(0.07) 0.74(0.13) 0.92(0.03)
Multi-task + homo noise weighting [1] - - 0.92(0.02) 0.92(0.02) 0.73(0.07) 0.76(0.10) 0.93(0.02)
Multi-atlas propagation [5] - - 0.89(0.02) 0.90(0.01) 0.73(0.06) 0.77(0.06) 0.90(0.03)
Multi-task + dropout + hetero - - 0.91(0.02) 0.91(0.02) 0.70(0.06) 0.74(0.12) 0.93(0.04)
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Fig 2. MR-only 
radiotherapy treatment 
planning.


