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Motivation and overview

• Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease 
with multiple pathological processes

• The evolution of local pulmonary damage can differ across patients with equal 
global values across the lung

• More accurate methods for quantifying disease spread [1] and efficiently 
computing pairwise similarities [2] are needed

Overview of our method
• Model lung disease progression and local biomechanics with local disease and 

deformation probability distributions
• Pairwise similarities between distributions computed using the Earth Movers 

Distance 
• Manifold learning and fusion to embed the population into a lower-dimension 

manifold that parameterises various aspects of COPD progression
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I. Quantifying disease and deformation in COPD

• Classification of voxels       into emphysema and airway disease (fSAD) using 
Parametric Response Mapping [3]

• Non-rigid registration of paired breath-hold CT scans using NiftyReg [4] to 
calculate the Jacobian determinant map 

• Locally sample       and      to create local disease and deformation distributions
(Fig. 1 and Fig. 2)      

Fig. 1. The classification map      is locally sampled 
to model two properties of disease spread: 1) diffuse 
or dense local destruction and 2) global 
homogeneity or heterogeneity  

Fig. 2. The local mean of Jacobian 
map     Is sampled to model local 
biomechanics across the lung  

II. Manifold learning and fusion of COPD

• Distances between the distributions of two patients i and j are computed with 
the Earth Movers Distance (EMD)

• A pairwise matrix         is obtained by considering all pairwise distances in a 
population of P = 743 COPD patients

• Separate embeddings for emphysema       , fSAD       and lung deformation 
are learned from pairwise matrices         ,        and        using Isomap [5]:

• The manifold fusion framework of Aljabar et al. [6] is used to combine the 
embeddings     ,     and     into     (Fig. 3)

Fig. 3. Fusion of separate 
embeddings facilitates the 
construction of a low-dimensional 
representation of COPD that 
parameterizes several processes 
that drive its progression. Fusion is 
performed by applying Isomap on 
pairwise L2 distances on the 
concatenated coordinates                   

where       is 
scaling factor to yield unit-variance 
in the first component of   

III. Prediction of COPD severity

• We considered two models of COPD to predict FEV1% predicted
A. : fused embeddings for emphysema and fSAD (Fig. 4A)
B. : fused embeddings for emphysema, fSAD and Jacobian (Fig. 4B)

• Model B performed the best in predicting COPD severity in comparison to 
mean levels of emphysema, fSAD and Jacobian (Fig. 5)

Fig. 4. Two-dimensional 
projection of the learned low-
dimensional embeddings overlaid 
with FEV1% predicted colour 
map. 
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Fig. 5. Linear regression against FEV1% predicted for 
each model. Coordinates from      performed best in 
the prediction of COPD severity.      
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• Manifold fusion was performed to create a 
joint model using mean pairwise 
distances:          and

• Correlation between the first component 
of       and FEV1% predicted was 
calculated

• and       had stronger correlations 
(0.67* and 0.70*) in comparison to          
and          (0.60* and -0.65*) *p<0.001

IV. Trajectories of COPD progression

• Two trajectories of potential disease progression in the space of       were 
quantified by kernel regression:

• The EMD between the disease distributions (Fig. 1) and idealised healthy 
distributions (peak at 0) for emphysema and fSAD were used as covariates ( )

• The trajectories correspond to potential subtypes of COPD where either 
emphysema or fSAD are the dominant mechanisms

Fig. 6. Trajectories of COPD progression in 
the space of       parameterised by the 
disease distributions. Classification of 
patients into these potential subtypes 
improves the prediction of FEV1% predicted 
with an adjusted-r2 of 0.52 (emphysema) 
and 0.45 (fSAD). 
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V. Results and outlook

• The proposed disease and deformation distributions (Fig. 1 and 2) outperform 
conventional metrics that do not take into account local properties of COPD

• The position of a patient in the space of       may be critical for assessing COPD 
to inform therapeutic decisions based on the current COPD trajectory (Fig. 6)

• Complexity of the modelling can be improved by quantifying manifolds on a lobar 
basis or by considering additional textural measures


