Manifold Learning of COPD

Felix Bragman¹, Jamie McClelland¹, Joseph Jacob^{1,3}, John Hurst² and David Hawkes¹

¹Centre for Medical Image Computing, University College London, UK

²UCL Respiratory, University College London, UK

³Department of Radiology in the Mayo Foundation for Medical Education and Research, Mayo Clinic, USA

Motivation and overview

- Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease with multiple pathological processes
- The evolution of local pulmonary damage can differ across patients with equal global values across the lung
- More accurate methods for quantifying disease spread [1] and efficiently computing pairwise similarities [2] are needed

III. Prediction of COPD severity

- We considered two models of COPD to predict FEV₁% predicted A. \mathcal{Y}^{c_1} : fused embeddings for emphysema and fSAD (Fig. 4A) B. \mathcal{Y}^{c_2} : fused embeddings for emphysema, fSAD and Jacobian (Fig. 4B)
- Model B performed the best in predicting COPD severity in comparison to mean levels of emphysema, fSAD and Jacobian (Fig. 5)

Overview of our method

- Model lung disease progression and local biomechanics with **local disease and deformation probability distributions**
- Pairwise similarities between distributions computed using the Earth Movers Distance
- Manifold learning and fusion to embed the population into a lower-dimension manifold that parameterises various aspects of COPD progression

I. Quantifying disease and deformation in COPD

- Classification of voxels \mathcal{Z} into emphysema and airway disease (fSAD) using Parametric Response Mapping [3]
- Non-rigid registration of paired breath-hold CT scans using NiftyReg [4] to calculate the Jacobian determinant map ${\cal J}$
- Locally sample $\mathcal{Z}\,$ and J to create local disease and deformation distributions (Fig. 1 and Fig. 2)

- Manifold fusion was performed to create a joint model using mean pairwise distances: y^{µ(c1)} and y^{µ(c2)}
- Correlation between the first component of $y^{(\cdot)}$ and FEV₁% predicted was calculated
- y^{c_1} and y^{c_2} had stronger correlations (0.67* and 0.70*) in comparison to $y^{\mu(c_1)}$ and $y^{\mu(c_2)}$ (0.60* and -0.65*) **p*<0.001

Fig. 5. Linear regression against FEV₁% predicted for each model. Coordinates from y^{c_2} performed best in the prediction of COPD severity.

50 r

Fig. 4. Two-dimensional projection of the learned low-dimensional embeddings overlaid with $FEV_1\%$ predicted colour map.

Fig. 1. The classification map \mathcal{Z} is locally sampled to model two properties of disease spread: 1) diffuse or dense local destruction and 2) global homogeneity or heterogeneity

Fig. 2. The local mean of Jacobian map J is sampled to model local biomechanics across the lung

0.6 0.8

 $\mu(J)$

II. Manifold learning and fusion of COPD

- Distances between the distributions of two patients *i* and *j* are computed with the Earth Movers Distance (EMD)
- A pairwise matrix $\mathcal{M}^{(\cdot)}$ is obtained by considering all pairwise distances in a population of P = 743 COPD patients
- Separate embeddings for emphysema (y^e) , fSAD (y^f) and lung deformation (y^J) are learned from pairwise matrices \mathcal{M}^e , \mathcal{M}^f and \mathcal{M}^J using Isomap [5]:

$$\min \sum_{i,j} \left(D_{i,j}^{(\cdot)} - ||y_i^{(\cdot)} - y_j^{(\cdot)}|| \right)^2$$

The manifold fusion framework of Aljabar et al. [6] is used to combine the embeddings y^e , y^f and y^J into y^c (Fig. 3)

IV. Trajectories of COPD progression

• Two trajectories of potential disease progression in the space of y^{c_1} were quantified by kernel regression:

$$y^{c}(l(\cdot)) = \frac{1}{v} \sum_{i} K(l_{i} - l)y_{i}^{c}$$

- The EMD between the disease distributions (Fig. 1) and idealised healthy distributions (peak at 0) for emphysema and fSAD were used as covariates (l_i)
- The trajectories correspond to potential subtypes of COPD where either emphysema or fSAD are the dominant mechanisms

Fig. 6. Trajectories of COPD progression in the space of y^{c_1} parameterised by the disease distributions. Classification of patients into these potential subtypes improves the prediction of FEV₁% predicted with an adjusted- r^2 of 0.52 (emphysema) and 0.45 (fSAD).

Fig. 3. Fusion of separate embeddings facilitates the construction of a low-dimensional representation of COPD that parameterizes several processes that drive its progression. Fusion is performed by applying Isomap on pairwise L_2 distances on the concatenated coordinates $Y = [s^e y^e, s^f y^f, s^J y^J]$ where $s^{(\cdot)}$ is scaling factor to yield unit-variance in the first component of $y^{(\cdot)}$

V. Results and outlook

- The proposed disease and deformation distributions (Fig. 1 and 2) outperform conventional metrics that do not take into account local properties of COPD
- The position of a patient in the space of $y^{(\cdot)}$ may be critical for assessing COPD to inform therapeutic decisions based on the current COPD trajectory (Fig. 6)
- Complexity of the modelling can be improved by quantifying manifolds on a lobar basis or by considering additional textural measures

1. Harmouche et al. *Academic Radiology* 23(4), 2016

- 2. Batmanghelich et al. MICCAI 2016 Workshop: MCV and BAMBI
- 3. Galbán et al. *Nature Medicine* 18, 1711-1715 (2012)
- 4. Modat et al. Computer Methods and Programs in Biomedicine 98 (3), 2009
- 5. Tenenbaum et al. *Science* 290 (5500) , 2000
- 6. Aljabar et al. IEEE Transactions on Medical Imaging 30 (12), 2011

Acknowledgements. This work was supported by the EPSRC under Grant EP/H046410/1 and EP/K502959/1, and the UCLH NIHR RCF Senior Investigator Award under Grant RCF107/DH/2014. This research used data generated by the COPDGene study (phs000179.v3.p2), which was supported by NIH grants U01HL089856 and U01HL089897

